
Inside This Issue

continued on page 3 continued on page 6

Volume II, Number 4 August 1996

gy gy Newton Technolo
J O U R N A L

®

NewtonScript Techniques Real World Newton

NewtonScript Techniques
slimPicker: A Slimmer listPicker Proto 1

Real World Newton
Practicum/powerPen: Four-Year Student
Software Teams for Newton 1

Desktop Communication
Techniques
Mini-Meta Data: Another way to get
information to your PC 7

Newton Communications
Newton Programming:
Communications Overview 14

Communications Technology
Newton Programming:
DILs Overview 19

Practicum/power
Pen: Four-Year
Student Software
Teams for
Newton
by Jeffrey C. Schlimmer,
Washington State University

New computer science graduates from most
universities are not ready to go to work in
modern software companies. As software
professionals are quick to point out, these
students have only learned how to write 300-
line programs by themselves from scratch.
These programs were class assignments that
focused on elegance rather than efficiency or
maintainability. The specifications came out of
thin air, the code was poorly tested, the
interface was a simple command line, and
there was never any user’s manual. The
students did not learn how to reuse existing
code or how to work in teams (that would be
cheating). They did not learn how to trade-off
features and deadlines with customers.

Enough battering of the current university
system. That type of education provides basic
knowledge of data structures and algorithms
essential for engineering software. Our idea is
to supplement the traditional, fundamental
coursework with a four-year practical
curriculum modeling the activities of a
software company. From the university’s
point of view, entering freshmen are enrolled
in a four-year, software engineering course
called Team-Oriented Software Practicum.

slimPicker: A
Slimmer listPicker
Proto
by Jeremy Wyld and Maurice Sharp,
Apple Computer, Inc.

The Newton 2.0 OS provides many new
prototypes for developers to use. One of the
popular ones is protoListPicker. It was
designed to provide a generalized framework
and interface for presenting lists of choices to
the user. Unfortunately, protoListPicker
also tries to do everything for the developer.
The result is a complex API, and overhead in
space and time that is not necessary in a lot
of cases. This article presents a slimmer
picker.

THE DATA IS THE PICKER (LISTPICKER)
Most of the overhead from listPicker is due to
the way that it handles data. The purpose of
listPicker is to display lists of data that the
user can select items from. The data items can
be elements in an array, soup entries, or a mix
of both. To make the developers’ life easier,
listPicker requires some understanding of
what the data is and how it is formatted. This
is where the pickerDef and nameRef structures
come from.

A nameRef is a generic data wrapper. It can
be used to wrap an array element or a soup
entry. All of the relevant data slots are part of
the top level frame of the nameRef so that
listPicker does not need to modify the actual
data referenced by the nameRef. The pickerDef
is the code object responsible for creating
and managing nameRefs.

August 1996 Newton Technology Journal

2

They say that all good things must
eventually come to an end. I say that all
good things must eventually evolve into
better things. And so it is with the
Newton Technology Journal. Like
everything and everyone at Apple
Computer, we are in the process of
evaluating programs, projects, and
organizations and designing them to be
better, more efficient and, above all else,
significant in contributing to the success
of Apple’s key technologies and partners.
This is great news for Apple’s developer
community and the projects, programs
and publications that feed the success of
this community. It is especially good news
for Newton developers, who are finding
renewed commitment and excitement
around the Newton platform as a
technology critical to Apple’s future
success. It is as we have always known it
should be.

So, in the vein of making good things
better, the Newton Systems Group is
dedicating more resources to developer
information, education, and support. Along
with this comes new people with fresh ideas
about improvement and expansion. While
we continually receive feedback that the
Newton Technical Journal is a valuable
piece of your developer support portfolio,
we are looking to improve it and grow it
into a publication that serves your specific
needs. With this goal in mind, it is with
great excitement and expectation for such
continued growth that I pass the editorial
reins over to a new managing editor, who
will bring to the publication fresh ideas,
new enthusiasm and a close tie to Newton
training and educational programs. All
these things combined will undoubtedly
result in a better, more efficient suite of
developer education products, including

an expanded NTJ. So, without further ado,
let me welcome Jennifer Dunvan as the
Managing Editor of the Newton Technology
Journal.

……………………………………………………

Published by Apple Computer, Inc.

Jennifer Dunvan • Managing Editor

Gerry Kane • Coordinating Editor,Technical Content

Gabriel Acosta-Lopez • Coordinating Editor, DTS and
Training Content

Technical Peer Review Board
J. Christopher Bell, Bob Ebert, David Fedor,
Ryan Robertson, Jim Schram, Maurice Sharp,
Bruce Thompson

Contributors
Ryan Robertson, Jeffrey C. Schlimmer, Jeremy Wyld
and Maurice Sharp,

……………………………………………………

Produced by Xplain Corporation

Neil Ticktin • Publisher

John Kawakami • Editorial Assistant

Matt Neuburg • Editorial Assistant

Judith Chaplin • Senior Art Director

……………………………………………………

© 1996 Apple Computer, Inc., 1 Infinite Loop,Cupertino,CA
95014, 408-996-1010. All rights reserved.

Apple, the Apple logo, APDA, AppleDesign, AppleLink,
AppleShare, Apple SuperDrive, AppleTalk, HyperCard,
LaserWriter, Light Bulb Logo, Mac, MacApp, Macintosh, Macintosh
Quadra, MPW, Newton, Newton Toolkit, NewtonScript,
Performa, QuickTime, StyleWriter and WorldScript are
trademarks of Apple Computer, Inc., registered in the U.S. and
other countries. AOCE, AppleScript, AppleSearch, ColorSync,
develop, eWorld, Finder, OpenDoc, Power Macintosh,
QuickDraw, SNA•ps, StarCore, and Sound Manager are
trademarks, and ACOT is a service mark of Apple Computer, Inc.
Motorola and Marco are registered trademarks of Motorola, Inc.
NuBus is a trademark of Texas Instruments. PowerPC is a
trademark of International Business Machines Corporation, used
under license therefrom. Windows is a trademark of Microsoft
Corporation and SoftWindows is a trademark used under license
by Insignia from Microsoft Corporation. UNIX is a registered
trademark of UNIX System Laboratories, Inc. CompuServe,
Pocket Quicken by Intuit,CIS Retriever by BlackLabs, PowerForms
by Sestra, Inc.,ACT! by Symantec, Berlitz, and all other trademarks
are the property of their respective owners.

Mention of products in this publication is for informational
purposes only and constitutes neither an endorsement nor a
recommendation.All product specifications and descriptions were
supplied by the respective vendor or supplier. Apple assumes no
responsibility with regard to the selection, performance, or use of
the products listed in this publication. All understandings,
agreements, or warranties take place directly between the vendors
and prospective users. Limitation of liability: Apple makes no
warranties with respect to the contents of products listed in this
publication or of the completeness or accuracy of this publication.
Apple specifically disclaims all warranties, express or implied,
including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.

gy gy Newton Technolo
J O U R N A L

®

Volume II, Number 4 August 1996 Letter From the Editor
by Lee Dorsey and Jennifer Dunvan

Editor’s Note

continued on page 22

Newton Technology Journal August 1996

3

The pickerDef and nameRef structure provides flexibility, but data that
is only array based or only soup based pays the overhead for
representing the mixed array/soup data. Every line of data displayed in
the listPicker requires a nameRef structure which requires heap space.
Each nameRef created requires several levels of function calls to the
pickerDef object. Each access to a nameRef requires several levels of
functions calls. This is true even for a simple access such as comparison.
Caching the data in the nameRef can sometimes avoid the calling
overhead, but it costs heap space.

The pickerDef/nameRef abstraction does provide some benefits. In
addition to the obvious mixing of array and soup items, it also enables
listPicker to render the individual data display lines with little developer
intervention. It also makes filing easy. On the downside, the
representation is quite brittle. The seemingly simple task of using an
icon as the first item in the rendered line of data is actually very difficult
to implement.

A hidden cost is the complexity of learning to use listPicker. To
create a simple picker that displays developer data requires
understanding protoListPicker, the pickerDef object (such as
protoNameRefDataDef) and the nameRef wrapper. It also requires
learning how these three entities interact. There is no clear delineation
of data manipulation and display characteristics. A good example of
this is single selection, which is a characteristic of the pickerDef not the
listPicker.

Another hidden cost is the “cursor” used by the listPicker. In order
to handle both array- and soup-based data, the listPicker must
implement a pseudo-cursor that can wrap both types of data.
Unfortunately, the details of the implementation are hidden. This means
that it is very difficult to use listPicker on data that is represented
across multiple soups.

If you are displaying lists of names, or if your data can be both array
and soup based, listPicker provides a nice proto for you to use.
However, for most developers, all they want is to display soup-based
data in a list. Enter slimPicker...

YOU DATA, ME PICKER (SLIMPICKER)
When we set out to design slimPicker, we set four goals (well five, see
below):
1. Provide the listPicker look and feel.
2. Minimize space and time costs.
3. Make it easy for the developer to understand and use.
4. Allow the developer to customize it with minimal effort.

Originally, we had a fifth goal of keeping the same API as listPicker. We
hoped that a developer could just substitute slimPicker for listPicker
and everything would work. However, we dropped that requirement
after finding that supporting the API required very similar overhead to
listPicker. Most of the overhead came from an iterator that could work
with both soup cursor and arrays.

Once we dropped the requirement for supporting the API, we also
dropped the pickerDef and nameRef structures. This contributes to all

four goals. Most of the overhead of listPicker is in the pickerDef/nameRef
call chains, as is most of the complexity and brittleness of
implementation.

The rest of this section gives some examples of how the goals
effected the design and implementation.

continued from page 1

slimPicker: A Slimmer listPicker Proto

August 1996 Newton Technology Journal

4

Look and Feel
The look and feel was easy to do. We examined listPicker to see

which individual elements were used in its construction. We had the
source code, but you could do a similar thing using DV in the
inspector. We used the same elements in slimPicker with only one
notable exception: instead of using a protoStaticText for the
selection counter, we draw it. This saves a bit of time and space
(though not much).

The main part of slimPicker is implemented using a protoOverview
because it can be used with either array- or soup-based data. It
requires a cursor (or cursor-like) object for iterating over the data. The
other nice feature of protoOverview is that it handles the selection
check boxes.

The downside is that there is no supported way to cache the
shapes used for each data display line. This results in a time penalty
every time the display list of data lines is rebuilt. Unfortunately, this
occurs any time you update the visual display list (that is, scrolling and
the RefreshPicker call). Luckily, slimPicker does this faster than listPicker.
If slimPicker were built into ROM, we could overcome this difficulty by
using undocumented features. However, we did not use these features
because they are likely to change in future Newton OS devices.

Space and Time
The main performance gains come from making the developers

responsible for their data. There is no pickerDef or nameRef structure
to provide a generic data wrapper. Instead there is a well defined
interface between slimPicker and the data. The developers are
responsible for rendering the shape that is a line of data. They are also
responsible for providing the cursor structure used by protoOverview,
handling verification, creating new items (including any editing slips)
and maintaining a list of the current selections.

Note that eliminating the pickerDef also eliminates the popup and
validation overhead. In listPicker, the only way to determine if a given
item in a column requires a popup character is to build the popup. That
means each line of data built by listPicker requires a call to MakePopup in
the pickerDef. In slimPicker, if a popup is required, the developer renders
the popchar into the display line for that data. They also need to detect
if a hit to that line is in the popable item, pop the correct picker and
handle the result.

Although it seems like we have added more work for the developer, it
is actually easier to implement a simple soup-based slimPicker than an
equivalent listPicker.

In essence, we speeded up slimPicker and reduced the space by
removing the data abstraction layer. This does increase the work a
developer must do, but it also removes most of the overhead as well as
reducing the complexity of the proto.

Easy to Understand and Use
In addition to eliminating the pickerDef/nameRef/listPicker

interactions, we also reduced the overall number of slots and methods
that a developer needs to learn. As an example, all of the listPicker
“suppress” settings are now in one bit field called
visibleChildrenFlags.

Another good example is adding new items. In listPicker you had to
enable the New button and then provide several methods in your
pickerDef. In addition, the callbacks for adding the new item are sent to

the pickerDef context, not to the listPicker. In slimPicker, you enable the
New button and provide one method called CreateNewItem. On the
downside, slimPicker will not do any work such as bringing up a slip or
calling back when the slip is dismissed. Instead, CreateNewItem is
called when the New button is pushed. Everything else is up to you.

The change that provides the most flexibility is letting you render a
line of data. You provide an Abstract method that is given the data
item and a bounding box and returns a shape that represents the data
item. That means you can put anything in that shape that is required,
including icons and columns. In listPicker, adding an icon was difficult
at best. In slimPicker, just add it to the shape for your data line.

slimPicker also provides an AlphaCharacter call that lets you
return the character used for sorting a particular item of data. In
listPicker you would have to provide at least one method (possibly
two) and set up the column description. If the first displayed column of
data was not the one used for sorting, there are additional methods
and slots that must be provided. This means things like displaying
icons in the first column is very difficult. For slimPicker, you can display
what you wish, and control the order with AlphaCharacter.

A downside of slimPicker is that the developer is responsible for
tracking selection. The developer needs to provide the IsSelected
and SelectItem methods that do the right thing. Each change in
selected state will require an update in the visual display of the data
lines, which means redoing the children of the overview (that is, a call
to RefreshPicker).

Single select is relatively easy to implement, use a single slot to
represent the selected item and refresh the picker. Your SelectItem
method will replace the value of the slot and your IsSelected method
will only return true if the entry passed in matches the one in the slot.
The rest is handled by slimPicker.

Easy to Customize
Even though single selection is provided by listPicker (through the

pickerDef!), it provides a nice example of how slimPicker is easy to
customize. It also points out that, once again, eliminating the
pickerDef/nameRef representation was a good decision.

Perhaps the biggest area of customization in slimPicker is the ability
to change the data types and representation on the fly. In listPicker it is
not possible to change the pickerDef or modify the cursor that access
the data. The only way to do that is to close and open the listPicker.
With slimPicker you have complete control over how the data is
accessed (cursor) and how it is represented (Abstract). All that is
required is a call to RefreshPicker, and everything will update.

Another example is filing. To add filing you just add the support you
normally would in an application. That is, activate the folder tab (set
the appropriate flag in visibleChildrenFlags), then provide the
standard system API for filing (appAll, NewFilingFilter, etc.). When
the filter changes, you can change your cursor and call
RefreshPicker.

SIX OF ONE, A DOZEN OF ANOTHER

This section gives you some comparisons between listPicker and
slimPicker. To be candid, the tests are stacked in favor of slimPicker.
They are based on simple soup-based viewing.

Newton Technology Journal August 1996

5

All the tests were performed on the same MessagePad. MP 120,
running Newton OS 2.0 and having 79 entries in Names. The listPicker-
based FAX picker was opened from faxing a note and choosing “Other
Names” from the Name picker. Heap space was measured before and
after the picker was opened using HeapShow in the accurate setting
with no timed updates. Timing started when the picker including
“Other Names” was closed and stopped when the FAX picker was
opened.

For the listPicker based People picker, we used the PeoplePicker-1
sample from Newton Developer Technical Support. Heap usage was
measured using HeapShow. Timing started after the pen was released
on the icon in the extras drawer and ended when the people picker
appeared and was ready for input.

The slimPicker measurements were done on the protoSlimFaxPicker-1
and protoSlimPeoplePicker-1 code samples. These will be on Newton
Developer CD #10 and on the web at
http://dev.info.apple.com/newton/techinfo/slimPicker.html.

listPicker slimPicker
Heap Used FAX picker 9300 3856
in bytes People picker 8496 2740
Time to Open FAX picker 5 3
in seconds People picker 3 2

As you can see from the table, slimPicker is more efficient than
listPicker in all cases. For heap usage this is not really surprising:
listPicker has the overhead of nameRefs, a more complex selection
tracking, extra cursors and a pickerDef. And slimPicker also has minimal
extra information.

Time to open is a bit different. Both listPicker and slimPicker use
protoOverview, but listPicker also has to construct the soup/array
iterator and the nameRefs. In addition, each data access has the
overhead of calling through the pickerDef object. slimPicker can just
iterate over the visible data and call Abstract on each entry. There is
very little housekeeping overhead.

Unfortunately, slimPicker is still fairly slow to launch. A quick profile
of slimPicker shows that about 10% of the opening time is spent in the
Abstract method of protoOverview. The other major piece is probably
soup access. This means there is no effective way to speed up the
code. The usual idea of caching is not useful since the slowness is part
of the opening process. If the slowness was in scrolling, caching might
makes sense, but of course that would increase the memory footprint.

One measure that is harder to estimate is the size of the object. We
can get a good measure of slimPicker by either looking at the size of the
package on the desktop, or by using TrueSize on the MessagePad.
There is no similar way to find the size of listPicker.

API
This section presents the API to slimPicker. Of course, you will have all
of the source code so you could modify anything. But just in case this
code shows up in ROM someday, stick to the API.

Slots

cursor

This slot is required.

The iterator for the data displayed by the slimPicker. Can be either a
soup cursor or a developer-defined object that implements the
methods required by the cursor slot of protoOverview. See the Newton
Programmers Guide or Newton Developer Technical Support Q&A for
more information on the protoOverview cursor structure.

folderTabTitle

The text to put into the protoFolderTab. This is used to identify the
slimPicker that is open. The default is NIL (i.e., no title).

You can use SetValue to change the value at runtime.

reviewSelections

If true, the slimPicker will only display the selected items. If NIL, all items
will be displayed. Corresponds to the “Selected Only” checkbox in the
user interface of the slimPicker. The default is NIL.

You can use SetValue to change the value at runtime.

viewLineSpacing
An integer representing the height of each line of data in the slimPicker.
This value must be at least the height of the checkbox. The default is
14.

visibleChildrenFlags

Bit flags identifying which child views are to be visible. The values are:

Constant Value Shows/Hides
vNewButton (1 << 0) New button for adding new data
items
vScrollers (1 << 1) Scrollers for scrolling the list
vAZTabs (1 << 2) AZTabs for alphabetical navigation
vFolderTab (1 << 3) Folder tab for filing
vSelectionOnly (1 << 4) Selection Only checkbox
vCloseBox (1 << 5) Close box for closing the slimPicker
vCounter (1 << 6) Count of selected items

The default is all views visible.

Methods

slimPicker:Abstract(entry, bounds)

This method is required.

Returns the shape that represents the given entry in the slimPicker. The
shape must not be larger than bounds. This is where the developer
renders an individual line of data. The returned shape must be one that
DrawShape can use.

continued on page 22

From the student’s point of view, they have joined a software company
called powerPen. The combination of fundamental and practical works
well because students become highly motivated. For example, they want
to learn in their English course because they want to write effective
marketing material or a clear user’s manual. They want to understand
compilers because they want to add an authoring language to their
application.

To be more specific, Practicum is roughly divided into two stages. In
the first two years, student teams study activities that surround
programming in a software company, i.e., marketing, testing, project
management, user documentation, and technical support. Freshmen
and sophomores can tackle these topics before they become effective
programmers. Each semester the team of students studies a text or two
on the topic and completes a related project for a regional software
company, sometimes under nondisclosure. In return, the company
provides written feedback on the student work. (We have found that
students take constructive criticism from future employers much more
seriously than from professors.) The goal of this first stage is to develop
basic skills in various software development tasks. We want them to
“walk in the shoes” of others that they will be working with when they
become software developers.

In the second stage of Practicum, students are reorganized into
product groups to build and support commercial-quality applications.
Students in these product groups design, program, market, and
support either a new version of an existing application or an initial
version of a new application. This process includes the following
steps: a user survey, a marketing requirements document (often done
in conjunction with a freshman team), a design specification, a
program, testing (with a freshman team), a user’s manual (with a
sophomore team), and a product release. The goal of this second stage
is to build experience while developing complete, high-quality
applications. We want them to see the whole software process in
action, and occasionally, make mistakes before jobs are riding on their
decisions.

After a year’s experience, we found that students had trouble applying
themselves to their industry projects in the first two years because we did
not have a common technology base. Some of the students knew only
Windows programming (and had PCs), some only Mac. To remedy this, we
adopted Newton as our common technology with the help of Apple in
early 1994. Apple donated a MessagePad for each of our students and
helped us set up a senior-level course in mobile computing that focuses
on Newton programming. The university purchased several Macs to host
the Newton Toolkit and allocated space for a development lab. Students
in Practicum/powerPen take the mobile computing course and gain
common, essential skills for building modern, graphical user-interface
applications. Newton has turned out to be an excellent choice because
of the huge potential in the hand-held market and the ease of developing
NewtonScript applications. It has also helped that the Newton developer
community is small and cooperative. Our freshmen and sophomore teams
have been able to do Newton marketing, testing, and documentation
projects for Newton companies. They have also volunteered at Newton

conferences and had summer internships with Newton companies.
Our first team started in 1992 with 10 freshmen. A second team

followed the next year, and a third in 1995. Currently 17 students are
involved in Practicum/powerPen: 5 seniors, 6 juniors, and 6 freshmen.
Like many companies, we experience regular turnover, losing about 50%
of the new students in the first year and another 25% of the overall
group upon graduation. The students are currently supporting six
Newton applications and developing a seventh. Each application is
available in at least one of six foreign languages. They have over 500
registered users in 25 countries.

Our most significant marketing channel is the Internet, and in specific
the World-Wide Web. We host a series of pages with the most current
version of each application. We distribute applications for free because
we want to have as many users as possible. These pages list known
defects, feature requests, source code, functional specs, and other
development information. We make our development information and
source freely available because we want to help others understand how
we are doing development – including other students not at our
university. For applications with a significant content market, the pages
also list content we and others have developed (e.g., plug-in dictionaries
for hangMan or decks of cards for flashCard). Where possible, the pages
list related applications commercially available from Newton companies.

Practicum/powerPen also provides an excellent opportunity to study
and refine the software development process. Two areas in which we
hope to contribute are localization and design methods. In
localization, we have devised techniques for managing the user-
interface strings of a Newton application so it can be easily converted
from one human language to another. Our latest efforts make it
possible for a non-programmer (but language expert) to specify strings
by filling out a Web form, submitting it, and receiving a compiled
Newton application correctly localized. This represents a dramatic
savings compared to Apple’s marketing estimates of US$10-25K to
convert a Newton application into each new language. We are inviting
our international users to test this system. It will leverage their
expertise and provide additional international access to Newton
applications.

In design methods we have adapted a functional specification
technique for event-driven programming in general and Newton
programming in specific. Based on a table structure, this specification
type is easy to code against and provides a ready-made test plan. Our
initial attempts with this methodology are also available on our Web
pages (under flashCard).

As an educational project, Practicum/powerPen relies on industry
support in three major ways. First, Newton companies can help by
making a tax-deductible donation to purchase new hardware. With
Apple’s help we have recently upgraded most of the students to Newton
2.0 OS but we will fall short when new freshmen join Practicum/powerPen
next fall. Second, companies can hire our students for internships or
upon graduation. Besides the benefit of personal experience and
growth, returning students share their expertise. Third, companies can
propose and evaluate marketing, testing, or user documentation

continued from page 1

Practicum/powerPen: Four-Year Student Software Teams for Newton

NTJ

August 1996 Newton Technology Journal

6

Newton Technology Journal August 1996

7

This article describes the development of a pair of applications that
export data from a Newton device to a desktop computer. There are
two applications: one that runs on a Newton device and one that runs
on a desktop computer. They are designed to allow a developer to
register data definitions so that soup information can be transferred
between the Newton device and the desktop computer.

(Mini-MetaData is a Newton DTS sample that should be available by
press time. You can find the Mini-MetaData source code on AppleLink
and the Newton WWW Site,
http://dev.info.apple.com/newton/newtondev.html. The next Newton
Developer CD will also contain this sample.)

YOU ARE THE CONNECTION

With all the additions to the Newton 2.0 OS, it may seem like exporting
data to your desktop computer has been overlooked: it has not: the
intention is for application developers to incorporate the Desktop
Integration Libraries (DILs) into their existing applications. This
approach will allow a user to directly connect to their Newton device
using their favorite desktop application. Before the DILs became
available, the user was required to use a second application called
Newton Connection Kit to transfer their Newton device’s data to a
more generic format that could then be used by desktop
applications.

The Desktop Integration Libraries are a set of platform-independent
C libraries and APIs that can be easily incorporated into an existing
application. They provide all the necessary support to connect to your
Newton and to transfer data between a Newton device and a desktop
computer.

There are currently two types of DILs: the communication DILs (CDILs),
and the frame DILs (FDILs). The communication DILs are used to open a
connection with the Newton and to read and write bytes of data. The
frame DILs let you read and write other Newton data types, such as frames
and arrays.

The two largest advantages to using the DILs are:

1) The DILs abstract all underlying transport details into an easy to
use API.

2) Your code will run on Mac OS™ and Windows™ with very little
modification.

The implementation of the Newton application described in this
article is intended to be as generic and extensible as possible and
allows a developer to register information about how to format data
before it is sent to the desktop computer. By doing this, the Newton
application can export data from many different soups using many
different formats (this format will be explained below in further detail).

For instance, you will be able to export your Names file to a tab-
delimited format that could be read into a database or a spreadsheet.

The desktop application will take the incoming data and dump it
into a text file. It should also be designed so that it will easily port to
other platforms. This means that the user interface code will be
separated from the implementation code. This implementation only
deals with text data, so the FDILs are not needed.

I’ll begin this discussion by describing the protocol used for
transferring data between the Newton device and the desktop
computer. After that, I’ll go into more detail of some of the major design
decisions for both the Newton application and the desktop
application.

YAKITY YAK, DO TALK BACK

The protocol used for sending and receiving data is fairly simple. First I
will discuss the Newton side of the protocol.

At various times during the connection, the Newton will send one of
three things: a command code, a string length, or a string. The
command codes have been purposefully selected as large numbers so
as to avoid conflict with the string length. Table 1 summarizes the
command codes sent from the Newton during the protocol.

Table 1. Command Codes Used by the Newton Protocol

Command code name Command code value Description
kNewtonCancelled 0x0FFF Sent when the user

presses the “Cancel”
button on the Newton.

kNewtonFinished 0x0FFE Sent when all of the
data
has been transferred to
the desktop application.

Command codes are only sent when the user is canceling the
operation or the export has completed. The rest of the protocol on the
Newton side consists of sending strings to the desktop computer. In
our protocol, the length of the string is sent first to let the desktop
application know how large the receiving buffer needs to be. By using
this technique, we guarantee that there will be no ambiguity as to
whether the received data is a command code or a string length.

Here is the C function that reads data from the CDIL pipe on the
desktop. It returns a value indicating whether the read was a success,
a failure, a cancel, or whether the Newton is ready to disconnect.

long ReadBuffer(LPSTR bufferPtr, long* length)
{

Boolean eom;
CommErr anErr;

Mini-Meta Data: Another way to get information to your PC
by Ryan Robertson, Apple Computer, Inc.

Desktop Communication Techniques

August 1996 Newton Technology Journal

8

long command;

// read the first four bytes, this will either be a command code or a string length
*length = 4;
anErr = CDPipeRead(gOurPipe, &command, length, &eom, 0, 0,

kPipeTimeout, 0, 0);
if (anErr) {

return kReadError;
}

// interpret the command code and act on it. If the data was not a command code,
// then it is a string length, so read in the string
if (command == kNewtonCancelled)

return kNewtonCancelled;
else if (command == kNewtonFinished)

return kNewtonFinished;
else if (command) {

*length = command;

// resize the buffer to the size of the string plus one for the null character.
if (realloc(bufferPtr, command+1)) {

anErr = CDPipeRead(gOurPipe, bufferPtr, length, &eom,
0, 0, kPipeTimeout, 0, 0);

if (anErr)
return kReadError;

bufferPtr[(*length)] = (char)0;// Null terminate the string
return kReadSuccess;

}
}

return kReadError;
} // ReadBuffer

The desktop PC side of the protocol consists of four command
codes which are summarized in Table 2.

Table 2. Command Codes Used by the Desktop PC Protocol

Command Command Description
code name code value
kHelloCommand 0x0FFD Sent when the connection
has
been established. This tells the
Newton application to start the
protocol.
kGoCommand 0x0FFC Sent when the desktop

application is ready to start
receiving the export data.

kAckCommand 0x0FFB Sent after the desktop has
successfully received a line of

data.
kErrorCommand 0x0FF9 Sent if there is an error
during
the connection.

Because most of the data transfer consists of the Newton device
sending data to the desktop machine, the Newton application uses
only one input specification for the entire protocol.

{form: 'number,

InputScript: func(ep, data, termination, options) begin
if data = kHelloCommand then begin // Hello command was received,

// start the protocol.
ep:DoEvent('StartProtocol, nil);
end else if data = kGoCommand then begin

// go command was received.
// Initialize and output the first line

ep._parent.fStatusView:StopBarber();

local numEntries := ep.fCursor:CountEntries();
ep:Parent().fStatusView:GoGoGadgetGauge(

numEntries, kSendingDataString);

ep:DoEvent('OutputData, nil);
end else if data = kAckCommand then

// ack command was received,
//output the next line

ep:DoEvent('OutputData, nil);
else begin // There was an error, so disconnect

GetRoot():Notify(
kNotifyAlert, kAppName, kProtocolErrorString);

ep:DoEvent('Cancel, nil);
ep:DoEvent('Disconnect, nil);

end;

nil;
end,

CompletionScript: func(ep, options, result) begin
ep:DoEvent('Disconnect, nil);

end,
}

If an unknown command code is received on the Newton device, the
Newton application signals a cancel and disconnects. An unknown
command code is likely to be caused by a communications error. If the
protocol were more robust, the Newton could try to resync with the
desktop machine and start sending data again

PROTOCOL OF THE WILD

Once the connection has been established, kHelloCommand is sent
from the desktop PC to the Newton device. Seeing the
kHelloCommand, the Newton application will send the name of the
application for verification purposes. This name is checked on the
desktop PC to make sure the connection is with the Mini-MetaData
application and not with the Newton’s built-in Connection application
or with the Toolkit App.

The next step is for the Newton application to send the name of the
file that data will be exported to. Once the desktop PC receives this
name, the standard save dialog will be opened with that file name as the
default.

When the user finishes selecting the target file, the desktop
application will send kGoCommand indicating it is ready to begin
receiving data.

At this point, the Newton application begins sending data in the
following pairs: a string length followed by the string. When the
desktop successfully receives and writes this string to the file, it will
send an kAckCommand to the Newton to signal that it is ready for
more data.

Finally, the Newton application sends kNewtonFinished when it
has finished transferring data. It then disconnects.

If the desktop encountered an error during the protocol, it will send
kErrorCommand to the Newton and disconnect.

Here is an example of the protocol in action:

Newton Technology Journal August 1996

9

Figure 1. Newton-Desktop Communication Protocol

Now that you understand the protocol, lets dive into the code on
the Newton.

NEWTON SIDE UP

To extend the mini-meta data application, you will add a format frame to
a global registry. The format frame includes such information as which
soup to send data from, what the query specification is, and how to
create a formatted string from a soup entry. This registry will be
discussed in more detail below.

The Newton application handles the format information and
provides a simple interface for selecting which format to use. To keep
the implementation as generic as possible, a form of meta data was
created. Using this meta data, a developer can have a maximum amount
of control over the format of outgoing information without explicitly
having to know much information about the Newton storage or
communications systems.

Here is a screen shot of what the Newton interface looks like.

Figure 2. The Mini-MetaData User Interface

The NTK Project for the Newton application consists of 10 files, 4 of
which are layout files.

Figure 3. The NTK Project Window for the Mini-MetaData Application

The important files to look at are: Endpoint.t, StatusView.t,
ProtocolFSM, and Main.t.

The hierarchy of the Newton application is illustrated in Figure 4.

Figure 4. Hierarchy of the MiniMetaData Application

GOGOGADGETSTATUSVIEW

It is very important to give the user feedback during the connection.
Newton 2.0 OS provides a terrific proto, protoStatusTemplate, for
conveying status information to a user. StatusView.t contains the
template for the status view that is used during the connection. One of
the beauties of using protoStatusView is that it has multiple
personalities. Among other things, a view based on protoStatusView
can be a single line of text, a barber pole, or a gauge. During our
connection we will use all three of these.

The barber pole element is used during the connection phase. The
barber pole was chosen because the time it takes to connect is not a
known value, and a simple line of text doesn’t necessarily give the user
the impression that a lengthy operation is taking place. During the
connection phase, the user may forget to signal a “wait for connection”

August 1996 Newton Technology Journal

10

event on the desktop which leaves the Newton waiting until the
connect request times out.

The gauge element is used while data is being sent. Because we
know the number of items that will be sent, a deterministic interface
element is a more appropriate choice here.

The simple status view is used for disconnecting. A barber pole was
not used because the disconnect operation is usually very fast. The
disconnect operation will also complete successfully regardless of
whether the desktop computer is disconnecting.

The status view template has three main methods of interest. They
are: GoGoGadgetBarberPole, GoGoGadgetGauge, and
GoGoGadgetSimpleStatus. Each of these methods will set up the
status template with the correct information and open it if necessary.

There are also some additional methods for updating the text, the
gauge, and the barber pole once the view has already been opened.

BACK TO THE BASICS

The mini-meta data application uses protoBasicEndpoint as the
prototype for the connection endpoint. Using protoEndpoint is
not recommended, and is actually impossible to use in a “2.0 only”
application. This new endpoint proto is much more reliable and
functional than protoEndpoint.

Endpoint.t contains the template for our endpoint. In addition to
the standard endpoint methods, there is one other method of interest:
OutputLine. OutputLine calls a helper function to format a soup
entry into an output string (this method will be discussed in more
detail later). It then outputs that string and updates the status view.

Here is the definition of OutputLine:

func() begin
local entry := fCursor:Entry();

// if there is an entry, then output the next line of data. Otherwise,
// output kNewtonFinished and disconnect.
if entry then begin

fData := :CreateStringFromEntry(entry, fMetaDataFrame);
fCursor:Next();

// Output the length of the data then output the data. If either
// output fails then post a ‘cancel event.
:Output(StrLen(fData), nil,

{async: true,
form: 'number,
CompletionScript: func(ep, options, result)
begin

if NOT result then
ep:Output(ep.fData, nil,

{async: true,
form: 'string,
CompletionScript: func(

ep, options, result)
begin

if NOT result then begin
ep._parent.fStatusView:UpdateGauge();
ep.fData := "";
end else
ep:DoEvent('Cancel, nil);

end,
});

else
ep:DoEvent('Cancel, nil);

end,
});

end else begin
// Output kNewtonFinished command and disconnect when the Output completes.
:Output(kNewtonFinished, nil, {async: true,

form: 'number,
CompletionScript: func(

ep, options, result)

begin
ep._parent.fStatusView:FinishGauge();
ep:DoEvent('Disconnect, nil);

end;
});

end;

end

HOLY FINITE STATE MACHINES BATMAN!
Using a deterministic finite-state machine for communications was
covered in depth in the April 1996 issue of NTJ (volume II, issue 2). This
application leverages off of the sample code produced for that article.
The file of interest is ProtocolFSM which has the layout of all the states
and events needed for our application.

There are three events worth pointing out. The first event is the
‘Create’ event in the Genesis state. This event sets up the endpoint, the
status view, and registers a power off function. Any initializations
needed for the connection should be done here.

Next we have the ‘Connect Success’ event in the ‘Connect’ state.
This event sets the input specification for our protocol, and also has
the definition of our input specification in the fInputSpecification
instance variable. This event is performed once there has been a
successful connection with the desktop computer.

Finally, we have the ‘OutputData’ event in the ‘Connected’ state.
This event simply calls the endpoint’s OutputLine method described
above. So why is this event of interest to us? Another possible
implementation for outputting data would have been to call the
OutputLine method directly from the input specification. Doing this
would remove an event from the state machine, and make the code more
centralized. However, by placing the OutputLine method in an event,
canceling functionality is provided for free. When the finite state
machine receives a cancel event, all posted communications requests
will be canceled, including the input specification.

By using the finite state machine sample, the code is more
understandable, and more modular. This type of modularity provides an
almost complete separation between the interface code and the
communications code. Having this separation will make future revisions
easier.

All communications code on the Newton side is asynchronous. This
decision was made because synchronous comms are generally evil.
When you post a synchronous comms request on the Newton, an
additional task is created – that’s Newton lingo for a new thread. This
adds needless overhead to the system, and can potentially reveal some
interesting problems. For instance, you may be outputting lots of data
in a loop using synchronous output requests. Each time through the
loop a new task will be created, which is a rather expensive operation.
The new task will take up system memory, and will not release control
until it returns to the main event loop (which does not happen until
you are finished with your output loop). As a consequence, the
Newton will eventually run out of system memory and come crashing to
its knees. Another drawback of using synchronous comms is that the
user loses control of their Newton while the comms request is waiting
to complete.

GRAND CENTRAL

Our main layout file is main.t. This file contains the code for selecting a
format, and creating an output string from a soup entry.

The important function to look at is CreateStringFromEntry.
This method is called repeatedly during the protocol. It is passed a
soup entry and will return a string representation of that entry by
using the format frame. It iterates over the field array in the format
frame, building a string from the elements of that array.

func(entry, metaFrame)
begin

local line, lineItem, result;

line := foreach lineItem in metaFrame.fields collect begin
// build the item string from the meta data frame.

// if lineItem is a path expression, the resolve it and return the value
if ClassOf(lineItem) = 'pathExpr OR
ClassOf(lineItem) = 'symbol then begin

if entry.(lineItem) then
entry.(lineItem) & metaFrame.itemSeparator;

else
metaFrame.emptySpace & metaFrame.itemSeparator;

end else if IsFunction(lineItem.format) AND
HasSlot(lineItem, 'pathExpr) then begin

// if we have a format function then pass in the value found using
// the pathExpr slot to the function.
result := call lineItem.format with (

entry.(lineItem.pathExpr));
if result then

result & metaFrame.itemSeparator;
else

metaFrame.emptySpace & metaFrame.itemSeparator;
end else if lineItem.format = 'quotedString AND

HasSlot(lineItem, 'pathExpr) then begin
// if format is ‘quotedString, then quote the value found using
// the pathExpr slot.
result := result;
if result then

$" & result & $" & metaFrame.itemSeparator;
else

metaFrame.emptySpace & metaFrame.itemSeparator;
end else if lineItem.format = 'quoteIfExists AND

HasSlot(lineItem, 'pathExpr) AND
entry.(lineItem.pathExpr) then begin

// if format is ‘quoteIfExists then quote if the value found using
// the pathExpr slot exists
$" & entry.(lineItem.pathExpr) & $" &

metaFrame.itemSeparator;
end else

metaFrame.emptySpace & metaFrame.itemSeparator;
end;

// return a string with the proper line separator
return Stringer(line) & metaFrame.lineSeparator;

end

DON’T FORGET THE DESKTOP

As discussed earlier, the desktop application uses the DILs to transfer
data between the Newton device and the output file. The requirements
of this application were simple enough that only the CDILs were
needed.

To help in the effort to create cross platform code, the project is
broken into two C files. There is a file for the main OS event handling
code and a file for the protocol code. They are Interface.c and
Protocol.c. The event code and the dialog code is not cross platform
because much of that code is specific to either platform. The protocol
code is cross platform and consists of the code to open the
connection with the Newton, handle the protocol, and close the
connection.

There are four functions in Interface.c that are not used for handling
OS events. They are CreateNOpenFile, WriteToFile,
UpdateNCloseFile, and InitializePipe. The first three are not in

Protocol.c because they contain file access routines that are specific to
one platform. Why InitializePipe is not in Protocol.c is not as
obvious: the underlying transport options are specified slightly
differently depending on whether you are running on MacOS or on
Windows.

OS EVENT HANDLING

The interface code is in the Interface.c file if you are using MacOS and is
in the INTERFAC.C file if you are using Windows. These files contain all
the standard event handling code and should probaby look pretty
familiar. In addition to the above mentioned functions
(CreateNOpenFile, WriteToFile, UpdateNCloseFile, and
InitializePipe), the MacOS code contains one other function of
interest: SetupPortMenu. This function correctly creates a list of the
ports available on the given machine. For instance, most Macintosh’s
have a printer and a modem port. However, if the user is running on a
Duo there is one printer/modem port.

PROTOCOL.C
This file contains all the code necessary to handle the protocol and the
various states of the connection. It also contains the code to handle
error reporting to the user. Most of the functions and procedures in
this file are easy to understand. However, there are a couple of areas
that warrant further discussion.

The procedure that handles most of the protocol is DoProtocol(),
and is defined as follows:

Newton Technology Journal August 1996

11

August 1996 Newton Technology Journal

12

void DoProtocol()
{

StandardFileReply fileReply;
short fileRef = 0;
long length;
char *bufferPtr = NULL;
long fBufferResult;
long anErr;

// preallocate a buffer that we think will be large enough for most data.
// This buffer will be resized as data is received.
if (!(bufferPtr = malloc(256))) {

ConductErrorDialog(kNoMemoryString);
return;

}

// Send kHelloCommand to the Newton
fBufferResult = WriteCommand(kHelloCommand);
if (fBufferResult == kWriteError)

Fail(FailWrite);

// Make sure the we have connected to the Mini-MetaData app on the Newton
fBufferResult = ReadBuffer(bufferPtr, &length);

switch (fBufferResult) {
case kReadSuccess:

if (strcmp(kHeloResponse, bufferPtr)) {
Fail(FailWrongApp);

}
break;

case kNewtonCancelled:
Fail(NewtonCancelled);
case kReadError:
Fail(FailRead);

}

// Read the filename to save the incoming data to
fBufferResult = ReadBuffer(bufferPtr, &length);

switch (fBufferResult) {
case kNewtonCancelled:

Fail(NewtonCancelled)
case kReadError:
Fail(FailRead);

}

// create and open the file, then start dumping data into it.
anErr = CreateNOpenFile(bufferPtr, &fileReply, &fileRef);
if (anErr == noErr) {

fBufferResult = WriteCommand(kGoCommand);

if (fBufferResult == kWriteError) {
UpdateNCloseFile(fileRef, &fileReply);
Fail(FailWrite);

}

// Loop until there is either an error, or until the Newton sends a cancel
// command or a finished command
while(true) {

CDIdle(gOurPipe);
fBufferResult = ReadBuffer(bufferPtr, &length);

switch (fBufferResult) {
case kReadSuccess:

anErr = WriteToFile(fileRef, &length, bufferPtr);

// if there was an error writing to the file, close the file, display
// an error and return.
if (anErr) {

Fail(FailWriteFile);
}

// send an kAckCommand, if there was an error then handle it.
fBufferResult = WriteCommand(kAckCommand);
if (fBufferResult == kWriteError) {

UpdateNCloseFile(fileRef, &fileReply);
Fail(FailWrite);

}
break;

case kNewtonCancelled:
UpdateNCloseFile(fileRef, &fileReply);
Fail(NewtonCancelled);

case kNewtonFinished:
ConductErrorDialog(kDownloadWasSuccessful);

UpdateNCloseFile(fileRef, &fileReply);
free(bufferPtr);

bufferPtr = NULL;
return;
case kReadError:

UpdateNCloseFile(fileRef, &fileReply);
Fail(FailRead);

}
}

}

WriteCommand(kErrorCommand);
free(bufferPtr);
bufferPtr = NULL;
return;

// These are the Goto locations that are jumped to using the Fail() macro.
FailWrite:

WriteCommand(kErrorCommand);
ConductErrorDialog(kBufferWriteErrorString);
free(bufferPtr);
bufferPtr = NULL;
return;

FailRead:
WriteCommand(kErrorCommand);

ConductErrorDialog(kBufferReadErrorString);
free(bufferPtr);
bufferPtr = NULL;
return;

NewtonCancelled:
ConductErrorDialog(kNewtonCancelledString);
free(bufferPtr);
bufferPtr = NULL;
return;

FailWriteFile:
ConductErrorDialog(kFileWriteErrorString);
WriteCommand(kErrorCommand);
UpdateNCloseFile(fileRef, &fileReply);
free(bufferPtr);

bufferPtr = NULL;
return;

FailWrongApp:
ConductErrorDialog(kWrongAppString);
free(bufferPtr);

bufferPtr = NULL;
return;

} // HandleProtocol

ReadBuffer and WriteCommand are helper functions used to read
to and write from the CDIL pipe.

The return value is checked to make sure there were no errors in the
protocol. If an error occurred, it is assumed that there is a problem with
the connection, and the connection is aborted. In an effort to retain
some amount of synchronicity, kErrorCommand is sent after an error has
occurred. There is a good chance that the kErrorCommandmay not be
sent because the original error was a communications error. A more
robust protocol would examine the error value and take appropriate
action based on that value. It may be possible to recover from the error
and continue receiving data.

REGISTERING THE META DATA

To extend the mini-meta data application, you will add a format frame to a
global registry. The symbol for this registry is
'|MiniMetaDataRegistry:DTS|. Here is an example of how you add
a format frame:

local registry;
if GlobalVarExists('|MiniMetaDataRegistry:DTS|) then

registry = GetGlobalVar('|MiniMetaDataRegistry:DTS|);
else

registry := DefGlobalVar(

Newton Technology Journal August 1996

13

EnsureInternal('|MiniMetaDatRegistry:DTS|),
EnsureInternal([]));

AddArraySlot(registry, myFormatFrame);

Here is how you would remove your format from the registry:

if GlobalVarExists('|MiniMetaDataRegistry:DTS|) then begin
local registry = GetGlobalVar('|MiniMetaDataRegistry:DTS|);
local pos :=

LSearch(registry, myFormatSym, 0, '|=|, 'symbol);
if pos then

RemoveSlot(registry, pos);
end;

Here are some examples of what a format frame might look like:

{title: "Names File - First, Last",
symbol: '|Format1:DTS|,
soupName: "Names",
lineSeparator: unicodeCR,
itemSeparator: ",",
emptySpace: " ",
fields: ['name.first, 'name.last]}

{title: "Names File - First, Last, Address, Phone",
symbol: '|Format2:DTS|,
soupName: "Names",
fileName: "Names Export",
fields: ['name.first, 'name.last, {format: func(s)

if s then CapitalizeWords(s) else nil,
pathexpr: 'address},

[pathexpr: 'phones, 0]]}

{title: "Names File - First, Last, City",
symbol: '|Format3:DTS|,
soupName: "Names",

itemSeparator: ",",
lineSeparator: unicodeCR,
emptySpace: " ",
fields: ['name.first, 'name.last,

{format: 'quotedString, pathexpr: 'city}]}

Each MetaData frame must have the following slots: title, symbol,
fields, either GetSoupName or soupName, and either GetQuerySpec or
querySpec. It may optionally have a lineSeparator slot, emptySpace slot,
and an itemSeparator slot.

Here is a more in-depth description of each slot:

title
The name of this particular meta data frame. This is the name that will
appear to the user in the list of installed meta data frames.

Symbol
This is a unique symbol used to identify this particular meta data frame.
If you register two meta data frames with the same symbol, the second
one that is installed will overwrite the first one. Append your developer
signature to the symbol.

soupName
The name of the soup to export data from, or nil.

GetSoupName
If you cannot know the name of the soup at compile time, specify this
slot instead of the soupName slot. GetSoupName will hold a function

NTJ

If you have an idea for an article
you’d like to write

for Newton Technology Journal,
send it via Internet to: NEWTONDEV@applelink.apple.com

or AppleLink: NEWTONDEV

August 1996 Newton Technology Journal

14

The Newton operating system is designed with communications as an
integral part of the system. The pervasive approach is that whatever
you can see in a Newton application, you can send. Part of this
approach is the notion that, as much as possible, the user will have a
very similar experience in sending data regardless of the medium used
to send it.

From a programming point of view things are not quite so simple
but the architecture is designed in a layered way so that little
programming is required unless the situation is fairly unusual. In other
words, there is a great deal of built-in communications software in the
Newton which can be used to provide basic communications
functionality for almost any program.

Figure 1 shows the various layers comprising the Newton
communications system and the programming interfaces used to
access these elements. The rest of this article gives brief descriptions of
these APIs as well as providing references to more details about them.

Figure 1: Newton Communications Layers

The following is a brief description of the items shown in Figure 1
and their APIs.

A NewtonScript application using the Routing API is the simplest
way for application programmers to provide communications support
from a Newton device. Any application written in NewtonScript can use
communications modules which have been installed as Transports. In
Newton 2.0 OS, this includes the built-in transports for beaming, faxing,
mailing, and printing. To use the available transports, the Routing

application programming interface (API) is used to specify which data is
being “routed”, what form it takes and how it should appear (for
example, print format). The Newton 2.0 OS uses a store-and-forward
model for this kind of communications and the In/Out boxes are where
incoming or outgoing data is stored in the routing model.

In/Out Box Application and Transport API. Built into the system is
the In/Out Box application which manages the soups used to store
incoming and outgoing data. This application communicates with one
of several Transports, which consist of code provided to move the data
to or from the appropriate destination or source. While there are
several built-in transports in the system, NewtonScript programmers
may write their own transport to provide system-wide data
management.

Endpoint API and Endpoint System. The Endpoint API is a
NewtonScript interface for performing direct communications with the
outside world. Applications programmers may add endpoint code to
their programs to communicate directly with an external source or
destination. An example of this might be endpoint code which
communicates directly with a GPS device on demand. Transports have
endpoint code to move the data they receive out to an external
destination or to receive data from an external source prior to passing
it to the In/Out Box Application.

Low-level Communication Tools. These tools are implemented in
C++ and actually communicate with the C++ interfaces to the
hardware drivers. While these interfaces are not yet available, they will
be published in the future.

Each of the APIs will be described in more detail in the remainder of
this article.

ROUTING

The Newton OS is provides a store-and-forward model for
communications and uses the In/Out Boxes as the place where target
data is stored. The term store and forward means that messages are
routed (directed) to a distant communications device or from such a
device to a Newton application through an intermediate holding area
(the In/Out Boxes). Target data is any piece of information which is being
routed in or out of the Newton.

The In/Out Boxes are actually a single application which provides
the storage in the form of a soup, the functionality of sending and

Newton Programming: Communications Overview
Newton Developer Training

Newton Communications

Newton Technology Journal August 1996

15

receiving messages, and the interface that lets the user look at pending
message and dispose of them as he or she desires. Figure 2 shows
what the In/Out Boxes might look like when there are messages
pending. Note that at any time the user can switch from In Box to Out
Box and vice versa via the radio buttons at the top of the view.

Figure 2. The In/Out Box User Interface

Routing is usually triggered by using the Action button that is
displayed in the view from which something will be routed. The Action
button is displayed in the view as a pop-up which shows available user

actions as illustrated in Figure 3. Some applications will have one
Action button in the status bar, others will have one in each of several
views. The Names application is an example of a single Action button
because normally only one name at a time is viewed. The Notes
application has an Action button attached to each note since there may
be many notes on the screen at any given time.

The Action button is created on screen by adding the prototype
protoActionButton to the desired view.

Figure 3. The Action Button Popup

Each target object which is routed must have a meaningful class.
For frames, this means that the frame must have a class slot which
identifies the type of data associated with this kind of object. Normally,
each application will supply its own class of data for routing, such as
'|myData:MYSIG|. This class is used by the system to look up in the
Data View Registry the list of routing frames which may be used to
route data of a specific class. From these routing frames, a list of
transports or communication methods (for example, faxing, printing,
beaming) which can route the target data are supplied to the Action
button. The net result of this is that when the user taps on the Action
button a list of the destinations appear which are appropriate for the
target data.

Figure 4 shows how this is all interconnected. An application,
usually in its InstallScript, will put one or more frames named for the
classes of data which it will route into the Data View Registry. These
Frames will consist of one or more Routing Frames which describe what
format the target data can take when it is routed. The system uses this
to search the list of installed transports and, when it finds a transport
which supports one of the routingTypes, adds the transport name to
the list to be displayed in the Action button.

So in the example shown in Figure 4, the application has installed a
frame |forms:MYSIG| in the View Definition Registry which supports
dataTypes of 'view, 'frame and 'text. These are used to choose the
transports for printing, faxing, beaming and mailing so these appear in
the Action button the user has pressed. Note that it doesn’t pick up
the compress transport whose dataType is 'binary.

When the user selects a transport from the Action button, an
appropriate routing slip is displayed and all formats that in which the
data can be displayed are displayed in the format picker as shown in
Figure 5. Formats describe how the target data should be organized
before sending it onward to the appropriate destination. For example,
when printing, there might be several formats such as letter, memo,
two-column, and so on, which describe how the target data will be

August 1996 Newton Technology Journal

16

printed.
When the user has selected a format for the target data

and sent it off, the appropriate transport is then messaged
with information about the target data and the data is placed
in the Out Box for further disposition.

Figure 4. The Routing System

Figure 5. The Format Picker

TRANSPORTS

The simplest definition of a transport is – something to which data
can be routed. But a more useful definition is that a transport is a
globally available service offered to applications for sending or
receiving data. Because of the global nature of transports, it is not
necessary, or even likely, for an individual application to define a
transport.

The built-in transports include printing, faxing, mailing, and
beaming, but one might imagine additional transports such as
messaging, scanning, compressing, archiving, or encrypting. Thus,
while transports are usually associated with hardware (printers, mail
servers, and scanners, for example) this is not necessarily the case (e.g.,
compressing, archiving, encrypting), since a service may be offered that
alters the data being routed without sending it to any outside
hardware.

Transports are usually built as auto-load parts; they appear in the
Extensions folder of the Extras Drawer. A transport’s InstallScript
registers it with the system by calling the global function
RegTransport(). As described earlier in the routing discussion, if
appropriate target data is routed, the transport’s name will appear in
the action list in an application when the user taps the Action button.

Because most transports have communications code that will be
used to send or receive the target data, they will typically also include
endpoint code that communicates with the destination.

Transports usually work with an application via the In/Out Box
application. When an application routes data out to a transport, the
transport provides a routing slip and is notified when the routed data
reaches the Out Box. When items are sent, the transport will get the
data from the Out Box and do whatever is necessary to send the data,
setting status information at appropriate stages during the transfer.

In the case of a request to receive data, the sequence is just slightly
more complicated. In the simplest case, when the user selects a
transport from the Receive button list in the In Box, the selected
transport is sent a request to receive data. The transport will then
connect to the remote source, get any pending data, and add it to the
In Box list.

There is also an option for a transport to get information about the
data being routed from the remote source and post this information
into the In Box without actually getting the data. This is useful in a
situation such as a mail transport where the user often wants to simply
get the titles of pending messages so he or she may choose which
messages they want to download to the Newton device.

The main proto used to create a transport is protoTransport.
The powerful thing about protoTransport is that in many cases,
surprisingly little code other than the actual endpoint code must be
written. This is because the transport defaults typically “do the right
thing” to provide an interface and behavior for the transport. Only
those features specific to the transport (for example, archive name for
an archive transport) must be added to the standard interface.

Transports which can send data also have their own routing slips
based on the prototype protoFullRouteSlip. This allows users to
provide transport-specific options such as addresses in a particular
format, and so on.

In particular, such things as displaying the status of a routing
request, logging of routed items, error handling, power-off handling,
and general user interfaces are handled well by the defaults if the
transport simply sets or updates a few slots when appropriate. Only
the actual service code (such as communications) will differ from one
transport to another.

ENDPOINTS

Endpoints are the primary NewtonScript API for programming
communications on the Newton device. They provide a “virtual
pipeline” for all communications. They are designed to hide most of
the specifics of a particular communications media and, once
connected, endpoint input and output code is usually the same
regardless of the media being used.

Endpoint code to receive data from an AppleTalk network can be
identical to code to receive data through a modem, which can be
identical to code to receive data over a serial line, and so on. Such
things as packetization – which occurs in any network protocol – are
hidden from the endpoint user during sending and receiving, as are
operations such as flow control, error recovery, and so on.

The only exceptions to this rule occur when there are specific
hardware limitations that push through the endpoint API. For example,
IR beaming is a half-duplex protocol (it can only be in send mode or
receive mode, not both at the same time) while serial, AppleTalk, or
modem communications are all full-duplex (they can be in send and
receive mode at the same time).

Of course, while sending and receiving are purposefully media-
independent, the connection process is necessarily tied to the media
being used. So, for example, with AppleTalk it is necessary to specify
network addresses; for modem communications, a phone number; for
serial communications, speed, parity, stop bits; and so on.

Figure 6 shows the life cycle of an endpoint. An endpoint is initially
defined as a frame proto’ed from protoBasicEndpoint. The frame
has several slots describing the settings of the endpoint and methods
that may be called by the system during the course of its existence.
However, such a frame is not an endpoint. That is, it describes what
an endpoint might look like, but it is not a NewtonScript object. To
create such an object, it must first be instantiated. Note that since
most objects in the Newton OS are views, and since the view system
automatically instantiates a view object when it is opened, we usually

Newton Technology Journal August 1996

17

August 1996 Newton Technology Journal

18

don’t see this step. But since an endpoint is independent of the view
system, we must explicitly instantiate it to create an endpoint object.

Figure 6. Life Cycle of an Endpoint

Once instantiated, an endpoint is opened by sending the Open()
message to it. This ties the endpoint to a low-level communications
tool in the system and spawns a new task at that lower level.

Once the endpoint is connected, it may need to be bound to a
particular media-dependent address, node, and so on. An AppleTalk
endpoint, for example, is bound to a node on the network. This is
done by sending the endpoint the Bind() message. Note that some
protocols (such as serial communications) do not have a required
binding phase but it is still necessary to call Bind() (and later,
Unbind()).

After binding the endpoint, the Connect() message is sent to
connect to the particular media being used. For a remote service that
is accessed through a modem endpoint, the endpoint would dial the
service and establish the physical connection. Note that the endpoint
does not handle protocol items such as logging on, supplying
passwords, and so on; these are part of an ongoing dialog that the
application and the service must engage in once connection is
established.

The endpoint method Listen() may be used to establish a
connection instead of the Connect() method if the endpoint is
instantiated and ready to listen to an “offer” by the remote source.
Based on the particular situation with the communications media, an
application may either reject the connection by sending the
Disconnect() message to the endpoint, or accept it with the
Accept() message. (Note that since infrared connections have one
side sending and the other side receiving, in this case the passive side
connects by calling Listen() instead of Connect().)

After connecting, the endpoint is ready to send and receive data.
Sending is fairly straightforward and is done by using the method
Output(). When sending data, information about the form of the data
(such as that it is a string, a NewtonScript frame, and so on) is usually
sent. This gives the system a description of how the data should be
formatted as it is being sent.

Output may be made either synchronously or asynchronously with
asynchronous calls requiring that a callback method be specified.

Receiving data is a little more complex. Incoming data is buffered by
the system below the application endpoint level. An application must
set up a description of when it wants to get incoming data. This
description is in the form of an inputSpec. For example, an
inputSpec could be created which looked for the string “login:”, or it
could be set to trigger when 200 characters were received. To some
extent, it can be set to notify the endpoint of incoming data after a

NTJ

To send comments
or to make requests for articles in Newton Technology Journal,

send mail via the Internet to:
NEWTONDEV@applelink.apple.com

Newton Technology Journal August 1996

19

An important new addition to Newton communications programming
is a set of libraries called the Desktop Integration Libraries or DILs. The
first and most important thing to understand about DILs is that they
have nothing to do with programming communications on the Newton
device. Instead, they are used to create a communications link between
Newton devices and desktop machines. In other words, they are an aid
for writing code for a desktop machine which will communicate with a
Newton.

Figure 1 shows this relationship. Essentially, endpoint code on the
Newton, whether part of an application or in a transport, transfers data
between a Newton device and a desktop machine. On the desktop
machine, an application which uses a DIL sends and receives data
which is handled by a desktop application. Currently DILs are available
for the MacOS and for Windows-based machines.

Figure 1: DILs and Newton Devices

The main advantage that DILs provide is that they make it easier to
write code for a desktop machine which communicates with a Newton
device. In particular, they abstract the Newton connection to a virtual
pipe for bytes and provide control over such things as ASCII-to-
Unicode conversions and Newton data structures and types such as
frames and 30-bit integers.

Figure 2: Hierarchical Structure of DILs

As shown in Figure 2 there are three DILs which build on one another:
CDIL, FDIL and PDIL. The Communications DIL (CDIL) provides basic

connectivity to a Newton device and must be used to establish a
connection before you can use the FDIL and PDIL. The Frames DIL (FDIL)
provides a relatively simple way to map NewtonScript frames to C
structures and also provides a mechanism to handle data which was
added dynamically to the frame. The Protocol DIL (PDIL) provides an easy
mechanism for synchronizing data between a Newton application and a
desktop application. At the time of writing, the PDIL is not yet available
but will be available in the future.

All of the DILs are libraries written originally in C++ but called using
a C-like syntax with a “magic cookie” object token passed into the calls.
On the MacOS side, there are MPW and Metrowerks libraries. On the
Windows side, DILs are implemented as DLLs and so should be
independent of particular C language implementations.

CDIL
The CDIL essentially has the following phases: initialization,
connecting, reading or writing, and disconnecting. This is
purposefully very similar to the normal endpoint life cycle. The idea is
to create and open a virtual pipe to the Newton device and then
communicate using some user-defined protocol by sending and
receiving messages or data down the pipe. Figure 3 shows the normal
order of calls in using the CDIL.

CDInitCDIL()
CDSetAppplication() // Windows only
CDCreateCDILObject()
CDPipeInit()
CDPipeListen()
CDPipeRead()/CDPipeWrite()
CDPipeDisconnet()
CDDisposeDILObject()
CDDisposeCDIL()

Figure 3: CDIL Calls

The CDInitCDIL() routine must be called before anything else
can be done with the CDIL. On Windows machines the routine
CDSetAppplication() must be called next. There is no equivalent
to this call on the MacOS.

Next, the routine CDCreateCDILObject() is called to create a
CDIL pipe. It returns a pointer to a pipe which must be used for all
subsequent calls which involve that pipe.

CDPipeInit() initializes the pipe so that it is “open for business.”
In particular, it sets the communications options including the media
details such as media type (for example, serial, AppleTalk, and so on),
and relevant media options (for example, speed of connection, data
bits, modem type, and so on).

Next, the pipe uses the CDPipeListen() call to wait for a

Newton Programming: DILs Overview
Newton Developer Training

Communications Technology

August 1996 Newton Technology Journal

20

connection from the Newton device. When the Newton device contacts
the desktop machine, the application using the CDIL may accept the
connection once CDPipeListen()) returns by calling
CDPipeAccept(). This allows a connection to be canceled if, for
example, the application decides that the actual connect rate was too
slow. At any time in this process, the desktop application can cancel an
attempted connection by calling CDPipeAbort().

Once a connection is established and working, streams of bytes can
be sent and received using the routines CDPipeRead() and
CDPipeWrite(). As with most CDIL routines, these calls may either be
made synchronously or asynchronously with a callback routine.

From this point on, the desktop application and the Newton
application can engage in an application-specific protocol where there
will be an predictable exchange of messages and data via the CDIL’s
virtual pipeline.

When the decision is made to terminate the connection, the routine
CDPipeDisconnect() should be called. Once this routine has
completed, connection has been broken and both sides must re-
establish the connection before data can again be sent or received.

Finally, when the desktop application is completely finished with the
pipe, it must call the routines CDDisposeDILObject() to tear down
the pseudo-object and CDDisposeCDIL() to close the CDIL
environment. On the MacOS, CDDisposeCDIL() closes the
Communications Toolbox tool which was opened, and on a Windows
machine it closes the appropriate driver.

There are several other additional CDIL calls which may be of use to
the desktop programmer. These fall into four categories: encryption,
utilities, status, and miscellaneous.

There are two encryption routines: CDEncryptFunction() and
CDDecryptFunction(). These pass callback routines used to the
CDIL. These callback routines are called by the CDIL library at the
appropriate time to encrypt or decrypt data passing through the pipe.
There is no attempt by the CDIL to packetize data and so, if the
programmer is using a unit-oriented encryption scheme (for example,
cipher block chaining), it is up to the application to buffer the
incoming or outgoing data until there is enough data to encrypt or
decrypt the block.

The utility routines include such things as CDFlush() which is
used to flush the contents of the pipe in a given direction, CDIdle()
which is used to call completion routines passed into asynchronous
calls as well as checking on and updating the status of the pipe, and
CDPipeAbort() which aborts any transactions in a given direction
which are pending.

The status routines return information about the pipe.
CDBytesInPipe() returns the number of bytes currently waiting in a
given direction in a particular pipe. CDConnectionName() return s
the name set by CDPipeInit(), CDGetConfigStr() returns the
media configuration string passed into CDPipeInit(), and
CDGetPortStr() which returns the name of the port the pipe is
connected to (for example, “COM2” or “Modem”).

CDGetPipeState() and CDSetPipeState() get and return the
current state of the pipe. Figure 3 shows a list of the possible states of a
pipe.

kCDIL_Unitialized
kCDIL_InvalidConnection

kCDIL_Startup
kCDIL_Listening
kCDIL_ConnectPending
kCDIL_Connected
kCDIL_Busy
kCDIL_Aborting
kCDIL_Disconnected
kCDIL_Userstate

Figure 3: CDIL Pipe States

Newton Technology Journal August 1996

21

The last of the utility class functions is CDGetTimeout() which
returns the amount of time in milliseconds before a read or write call will
time out.

Finally, the miscellaneous category includes two routines which may
be useful: CDPad() and CDSetPadState(). CDPad() pads the write
buffer so that it is an even multiple of a value passed in as a parameter.
This is useful for some packetized protocols or if a unit-oriented
encryption scheme is being used. CDSetPadState() turns the
padding specified by CDPad() on or off.

FDIL
The FDIL (also sometimes called HLFDIL for High Level FDIL) is used to
support the transfer of NewtonScript objects (frames and arrays) to the
desktop. A CDIL connection must be established before FDILs can be
used in order to provide the underlying pipeline for FDIL transfers.

Before FDIL calls can be made to move information to or from the
Newton device , the FDIL routine FDInitFDIL() must be called to
initialize the library.

The most common use of the FDIL is to map NewtonScript frames
into C structures. If the frame shown in Figure 4 is going to be
uploaded to a desktop machine, the desktop application can use FDILs
to map this frame into the fromNewt C structure shown in the figure.

aNewtFrame:={ slot1:'b,
slot2: {slot3:24,

slot4:{ slot5:16,
slot6:$c}

}

slot7: "TROUT"};

struct fromNewt {

char
slot1[5];

// symbols to str
struct slot2 {

long subslot3;
struct

subslot4 {

long subsubslot5;
char subsubslot6;

}; // slot4
}; // slot2
char slot7[32]; // or max strlen

}

Figure 4: Mapping a NewtonScript Frame to a C Struct

To build the mapping between the NewtonScript frame and the C
structure, an FDIL object is first created by calling the FDIL routine
FDCreateObject(). This object acts as the central linkage for all
items in the frame or array being sent or received. To map the slots in a
frame or elements in an array repeated calls to FDbindSlot() are
made. These calls match a Newton slot name (or an array object) to a C
variable or buffer.

In the case shown, there would be repeated calls to FDbindSlot()
each of which would specify a slot name of an element in the frame, the
address of a memory location the slot value will be copied into, and the
FDIL object which keeps all of the frame mappings. Once this binding
in completed, the data can be transferred with a single call to FDget().

When the Newton sends the frame data (presumably by calling
Output()) to the desktop, the FDIL will move the data into the
locations on the desktop machine specified in the bind calls. The FDIL
object created keeps track of all bindings previously made so that when
FDget() is called, the FDIL knows where each piece of incoming data
should be put in the desktop machine’s memory.

If data is being sent from the desktop machine to the Newton device,
the desktop application would call FDput() to send the data at the
addresses specified by the FDbindSlot() calls to the Newton device
in a flattened frame format which the Newton OS can understand. In
this case, on the Newton side it would be expected that an inputSpec
would have been established which expected a data form of 'frame.

FDget() and FDput()may be called asynchronously. If an
asynchronous call of these routines is made, it is important to remember
that the memory to which the data is bound must still be available when

the completion routine is called. In particular, memory should not be
allocated using local variables since the stack of the subroutine

making an asynchronous get or put call will disappear when the
program exits the subroutine and, on the MacOS, it is also

necessary to avoid using references to
unlocked handles since heap compaction
could cause memory blocks to move.

The steps for creating bound frames are
shown in Figure 5.

Figure 5: FDIL Cookbook For Bound Data

1. If not previously opened, open CDIL
pipeline.

2. Allocate memory on desktop for frame values.
3. Initialize FDIL.
4. Create the FDIL objects for each frame or array object.

NTJ

Figure 6: Unbound Data in slotDefinitions

August 1996 Newton Technology Journal

2222

NTJ

Wow, what an introduction! It will no doubt be an enormous
challenge to continue the tradition of service and technical excellence
that Lee has established with the production of the Newton Technical
Journal. So with both enthusiasm and trepidation I accept the
challenge of managing and growing the Newton Technical Journal to
be an outstanding informational and technical reference for Newton
developers.

As for me, I have spent the past year in the Newton Systems Group
managing Newton developer training. My current major projects are
the development of an on-line communication course (excerpts of
which are included in this issue), the conversion of the Newton

Essentials Course to a self-paced on-line version, and the preparation
of new technologies training. Prior to joining the Newton Systems
Group, I was at Borland International as an engineering manager in the
C++ developer support group. I am committed to providing Newton
developers all the information they need to write great applications,
whether it be in the form of training, technical journals, documentation,
on-line information, or support.

I’d like to start by inviting you, the Newton developer, to
communicate your ideas, interests, and requests via email. Several
months before each issue of Newton Technical Journal is published, a
core team of representatives from DTS, engineering, marketing,
solutions relations, and training meet and discuss possible topics to

slimPicker:AlphaCharacter(entry)

This method is required if the AZTabs are visible.

Returns a character representing the index value for the given entry.
The character will be used to set the appropriate tab in the AZTabs.

slimPicker:CreateNewItem()
This method is required if the New button is visible.

The method is called when the user taps the “New” button. The
developer is responsible for any work that needs to be done to add the
new entry. This includes creating and opening any editing or data
entry slip, adding the data to the cursor, selecting the new item, and
refreshing the slimPicker (see RefreshPicker below).

slimPicker:GetHiliteShape(xcoord, bounds)

This method is called to get the hilite box for a list item. The developer
should provide this method if they wish to create a multiple column
picker. This method should return something suitable for DrawShape.

xcoord is the current x coordinate of the pen normalized to bounds.

bounds is the bounding box for the item being hilited.

slimPicker:GetNumSelected()

This method is required if the counter is visible or
UpdateSelectedText is called.

Returns the number of selected items.

continued from page 2

Letter From the Editor

continued from page 5

slimPicker: A Slimmer listPicker Proto

NTJ

In NTJ Volume II Number 2, in the article “Apple Announces New
MessagePad 130 with Newton 2.0!”, there was an error in the
description of the backlight API. On page 21, a function called
BackLightPresent is documented. This function should not be
used. Although it exists in the MessagePad 130, it will not be
present in future hardware that has a backlight. The correct way to
test for the presence of a backlight is to use the Gestalt function
as follows:

// define this somewhere in your project until
// platform file defines it
constant kGestalt_BackLight :=

'[0x02000007, [struct,boolean], 1] ;

local isBacklight := Gestalt(kGestalt_BackLight) ;

if isBacklight AND isBacklight[0] then
// has a backlight

else
// has not got one

Correction

Correction

NTJ

To request information on or an application for
Apple’s Newton developer programs,

contact Apple’s Developer Support Center
at 408-974-4897

or Applelink: NEWTONDEV
or Internet: NEWTONDEV@applelink.apple.com

Newton Technology Journal August 1996

23

Newton Developer Programs
Apple offers three programs for Newton developers – the Newton Associates Program, the Newton
Associates Plus Program and the Newton Partners Program. The Newton Associates Program is a low cost,
self-help development program. The Newton Associates Plus Program provides for developers who need a
limited amount of code-level support and options. The Newton Partners Program is designed for
developers who need ujnlimited expert-level development. All programs provide focused Newton
development information and discounts on development hardware, software, and tools – all of which can
reduce your organization’s development time and costs.

Newton Associates
Program
This program is specially designed to provide low-
cost, self-help development resources to Newton
developers. Participants gain access to online
technical information and receive monthly mailings
of essential Newton development information. With
the discounts that participants receive on
everything from development hardware to training,
many find that their annual fee is recouped in the
first few months of membership.

Self-Help Technical Support
• Online technical information and developer

forums
• Access to Apple’s technical Q&A reference library
• Use of Apple’s Third-Party Compatibility Test Lab

Newton Developer Mailing
• Newton Technology Journal – six issues per year
• Newton Developer CD – four releases per year

which may include:
– Newton Sample Code
– Newton Q & A’s
– Newton System Software updates
– Marketing and business information

• Apple Directions – The Developer Business
Report

• Newton Platform News & Information

Savings on Hardware, Tools, and Training
• Discounts on development-related Apple

hardware
• Apple Newton development tool updates
• Discounted rates on Apple’s online service
• US $100 Newton development training discount

Other
• Developer Support Center Services
• Developer conference invitations
• Apple Developer University Catalog
• APDA Tools Catalog

Annual fees are $250. Newton Partners
Program
This expert-level development support program
helps developers create products and services
compatible with Newton products. Newton
Partners receive all Newton Associates Program
features, as well as unlimited programming-level
development support via electronic mail, discounts
on five additional Newton development units, and
participation in select marketing opportunities.

With this program’s focused approach to the
delivery of Newton-specific information, the
Newton Partners Program, more than ever, can
help keep your projects on the fast track and
reduce development costs.

Unlimited Expert Newton Programming-level Support
• One-to-one technical support via e-mail

Apple Newton Hardware
• Discounts on five additional Newton

development units

Pre-release Hardware and Software
• Consideration as a test site for pre-release

Newton products

Marketing Activities
• Participation in select Apple-sponsored marketing

and PR activities

All Newton Associates Program Features:
• Developer Support Center Services
• Self-help technical support
• Newton Developer mailing
• Savings on hardware, tools, and training

Annual fees are $1500.

For Information on All
Apple Developer Programs
Call the Developer Support Center for
information or an application.
Developers outside the United States
and Canada should contact their local
Apple office for information about local
programs.

Developer Support Center
at (408) 974-4897
Apple Computer, Inc.
1 Infinite Loop, M/S 303-1P
Cupertino, CA 95014-6299

AppleLink: DEVSUPPORT

Apple Developer Group

®

